Visualization for Results¶
neurora.rsa_plot module¶
a module for plotting the NeuroRA results
- neurora.rsa_plot.plot_brainrsa_glass(img, threshold=None, type='r')¶
Plot the 2-D projection of the RSA-result
- Parameters
img (string) – The file path of the .nii file of the RSA results.
threshold (None or int. Default is None.) – The threshold of the number of voxels used in correction. If threshold=n, only the similarity clusters consisting more than threshold voxels will be visible. If it is None, the threshold-correction will not work.
type (string 'r' or 't') – The type of result (r-values or t-values).
- neurora.rsa_plot.plot_brainrsa_montage(img, threshold=None, slice=[6, 6, 6], background='/Users/zitonglu/opt/anaconda3/lib/python3.9/site-packages/neurora/template/ch2bet.nii.gz', type='r')¶
Plot the RSA-result by different cuts
- Parameters
img (string) – The file path of the .nii file of the RSA results.
threshold (None or int. Default is None.) – The threshold of the number of voxels used in correction. If threshold=n, only the similarity clusters consisting more than threshold voxels will be visible. If it is None, the threshold-correction will not work.
slice (array) – The point where the cut is performed. If slice=[slice_x, slice_y, slice_z], slice_x, slice_y, slice_z represent the coordinates of each cut in the x, y, z direction. If slice=[[slice_x1, slice_x2], [slice_y1, slice_y2], [slice_z1, slice_z2]], slice_x1 & slice_x2 represent the coordinates of each cut in the x direction, slice_y1 & slice_y2 represent the coordinates of each cut in the y direction, slice_z1 & slice_z2 represent the coordinates of each cut in the z direction.
background (Niimg-like object or string. Default is stuff.get_bg_ch2bet()) – The background image that the RSA results will be plotted on top of.
type (string 'r' or 't') – The type of result (r-values or t-values).
- neurora.rsa_plot.plot_brainrsa_regions(img, threshold=None, background='/Users/zitonglu/opt/anaconda3/lib/python3.9/site-packages/neurora/template/ch2.nii.gz', type='r')¶
Plot the RSA-result regions by 3 cuts (frontal, axial & lateral)
- Parameters
img (string) – The file path of the .nii file of the RSA results.
threshold (None or int. Default is None.) – The threshold of the number of voxels used in correction. If threshold=n, only the similarity clusters consisting more than threshold voxels will be visible. If it is None, the threshold-correction will not work.
background (Niimg-like object or string. Default is stuff.get_bg_ch2()) – The background image that the RSA results will be plotted on top of.
type (string 'r' or 't') – The type of result (r-values or t-values).
- neurora.rsa_plot.plot_brainrsa_rlts(img, threshold=None, slice=[6, 6, 6], background=None, type='r')¶
Plot the RSA-result by a set of images
- Parameters
img (string) – The file path of the .nii file of the RSA results.
threshold (None or int. Default is None.) – The threshold of the number of voxels used in correction. If threshold=n, only the similarity clusters consisting more than threshold voxels will be visible. If it is None, the threshold-correction will not work.
background (Niimg-like object or string. Default is None.) – The background image that the RSA results will be plotted on top of.
type (string 'r' or 't') – The type of result (r-values or t-values).
- neurora.rsa_plot.plot_brainrsa_surface(img, threshold=None, type='r')¶
Plot the RSA-result into a brain surface
- Parameters
img (string) – The file path of the .nii file of the RSA results.
threshold (None or int. Default is None.) – The threshold of the number of voxels used in correction. If threshold=n, only the similarity clusters consisting more than threshold voxels will be visible. If it is None, the threshold-correction will not work.
type (string 'r' or 't') – The type of result (r-values or t-values).
- neurora.rsa_plot.plot_corrs_by_time(corrs, labels=None, time_unit=[0, 0.1], title=None, title_fontsize=16)¶
plot the correlation coefficients by time sequence
- corrsarray
The correlation coefficients time-by-time. The shape of corrs must be [n, ts, 2] or [n, ts]. n represents the number of curves of the correlation coefficient by time sequence. ts represents the time-points. If shape of corrs is [n, ts 2], each time-point of each correlation coefficient curve contains a r-value and a p-value. If shape is [n, ts], only r-values.
- labelstring-array or string-list or None. Default is None.
The label for each corrs curve. If label=None, no legend in the figure.
- time_unitarray or list [start_t, t_step]. Default is [0, 0.1]
The time information of corrs for plotting start_t represents the start time and t_step represents the time between two adjacent time-points. Default time_unit=[0, 0.1], which means the start time of corrs is 0 sec and the time step is 0.1 sec.
- titlestring-array. Default is None.
The title of the figure.
- title_fontsizeint or float. Default is 16.
The fontsize of the title.
- neurora.rsa_plot.plot_corrs_hotmap(corrs, chllabels=None, time_unit=[0, 0.1], lim=[0, 1], smooth=False, figsize=None, cmap=None, title=None, title_fontsize=16)¶
plot the hotmap of correlation coefficients for channels/regions by time sequence
- corrsarray
The correlation coefficients time-by-time. The shape of corrs must be [n_chls, ts, 2] or [n_chls, ts]. n_chls represents the number of channels or regions. ts represents the number of time-points. If shape of corrs is [n_chls, ts 2], each time-point of each channel/region contains a r-value and a p-value. If shape is [n_chls, ts], only r-values.
- chllabelstring-array or string-list or None. Default is None.
The label for channels/regions. If label=None, the labels will be ‘1st’, ‘2nd’, ‘3th’, ‘4th’, … automatically.
- time_unitarray or list [start_t, t_step]. Default is [0, 0.1]
The time information of corrs for plotting start_t represents the start time and t_step represents the time between two adjacent time-points. Default time_unit=[0, 0.1], which means the start time of corrs is 0 sec and the time step is 0.1 sec.
- limarray or list [min, max]. Default is [0, 1].
The corrs view lims.
- smoothbool True or False. Default is False.
Smooth the results or not.
- figsizearray or list, [size_X, size_Y]
The size of the figure. If figsize=None, the size of the figure will be ajusted automatically.
- cmapmatplotlib colormap or None. Default is None.
The colormap for the figure. If cmap=None, the ccolormap will be ‘inferno’.
- titlestring-array. Default is None.
The title of the figure.
- title_fontsizeint or float. Default is 16.
The fontsize of the title.
- neurora.rsa_plot.plot_corrs_hotmap_withstats(corrs, chllabels=None, time_unit=[0, 0.1], lim=[0, 1], p=0.05, cbpt=False, clusterp=0.05, stats_time=[0, 1], smooth=False, xlabel='Time (s)', ylabel='Channel', clabel='Similarity', ticksize=18, figsize=None, cmap=None, title=None, title_fontsize=16)¶
plot the hotmap of correlation coefficients for channels/regions by time sequence with the significant outline
- corrsarray
The correlation coefficients time-by-time. The shape of corrs must be [n_subs, n_chls, ts, 2] or [n_subs, n_chls, ts]. n_subs represents the number of subjects. n_chls represents the number of channels or regions. ts represents the number of time-points. If shape of corrs is [n_chls, ts 2], each time-point of each channel/region contains a r-value and a p-value. If shape is [n_chls, ts], only r-values.
- chllabelsstring-array or string-list or None. Default is None.
The label for channels/regions. If label=None, the labels will be ‘1st’, ‘2nd’, ‘3th’, ‘4th’, … automatically.
- time_unitarray or list [start_t, t_step]. Default is [0, 0.1]
The time information of corrs for plotting start_t represents the start time and t_step represents the time between two adjacent time-points. Default time_unit=[0, 0.1], which means the start time of corrs is 0 sec and the time step is 0.1 sec.
- limarray or list [min, max]. Default is [0, 1].
The corrs view lims.
- p: float. Default is 0.05.
The p threshold for outline.
- cbptbool True or False. Default is True.
Conduct cluster-based permutation test or not.
- clusterpfloat. Default is 0.05.
The threshold of cluster-defining p-values.
- stats_timearray or list [stats_time1, stats_time2]. Default os [0, 1].
The time period for statistical analysis.
- smoothbool True or False. Default is False.
Smooth the results or not.
- xlabelstring. Default is ‘Time (s)’.
The label of x-axis.
- ylabelstring. Default is ‘Channel’.
The label of y-axis.
- clabelstring. Default is ‘Similarity’.
The label of color-bar.
- ticksizeint or float. Default is 18.
The size of the ticks.
- figsizearray or list, [size_X, size_Y]
The size of the figure. If figsize=None, the size of the figure will be ajusted automatically.
- cmapmatplotlib colormap or None. Default is None.
The colormap for the figure. If cmap=None, the colormap will be ‘inferno’.
- titlestring-array. Default is None.
The title of the figure.
- title_fontsizeint or float. Default is 16.
The fontsize of the title.
- neurora.rsa_plot.plot_ct_decoding_acc(acc, start_timex=0, end_timex=1, start_timey=0, end_timey=1, time_intervalx=0.01, time_intervaly=0.01, chance=0.5, p=0.05, cbpt=True, clusterp=0.05, stats_timex=[0, 1], stats_timey=[0, 1], xlim=[0, 1], ylim=[0, 1], clim=[0.4, 0.8], xlabel='Training Time (s)', ylabel='Test Time (s)', clabel='Decoding Accuracy', figsize=[6.4, 4.8], cmap='viridis', ticksize=12, fontsize=16, title=None, title_fontsize=16)¶
Plot the cross-temporal decoding accuracies
- Parameters
acc (array) – The decoding accuracies. The size of acc should be [n_subs, n_tsx, n_tsy]. n_subs, n_tsx and n_tsy represent the number of subjects, the number of training time-points and the number of test time-points.
start_timex (int or float. Default is 0.) – The training start time.
end_timex (int or float. Default is 1.) – The training end time.
start_timey (int or float. Default is 0.) – The test start time.
end_timey (int or float. Default is 1.) – The test end time.
time_intervalx (float. Default is 0.01.) – The training time interval between two time samples.
time_intervaly (float. Default is 0.01.) – The test time interval between two time samples.
chance (float. Default is 0.5.) – The chance level.
p (float. Default is 0.05.) – The threshold of p-values.
cbpt (bool True or False. Default is True.) – Conduct cluster-based permutation test or not.
clusterp (float. Default is 0.05.) – The threshold of cluster-defining p-values.
stats_timex (array or list [stats_timex1, stats_timex2]. Default os [0, 1].) – Trainning time period for statistical analysis.
stats_timey (array or list [stats_timey1, stats_timey2]. Default os [0, 1].) – Test time period for statistical analysis.
xlim (array or list [xmin, xmax]. Default is [0, 1].) – The x-axis (training time) view lims.
ylim (array or list [ymin, ymax]. Default is [0, 1].) – The y-axis (test time) view lims.
clim (array or list [cmin, cmax]. Default is [0.4, 0.8].) – The color-bar (decoding accuracy) view lims.
xlabel (string. Default is 'Training Time (s)'.) – The label of x-axis.
ylabel (string. Default is 'Test Time (s)'.) – The label of y-axis.
clabel (string. Default is 'Decoding Accuracy'.) – The label of color-bar.
figsize (array or list, [size_X, size_Y]. Default is [6.4, 3.6].) – The size of the figure.
cmap (matplotlib colormap or None. Default is None.) – The colormap for the figure.
ticksize (int or float. Default is 12.) – The size of the ticks.
fontsize (int or float. Default is 16.) – The fontsize of the labels.
title (string-array. Default is None.) – The title of the figure.
title_fontsize (int or float. Default is 16.) – The fontsize of the title.
- neurora.rsa_plot.plot_ct_diff_decoding_acc(acc1, acc2, start_timex=0, end_timex=1, start_timey=0, end_timey=1, time_intervalx=0.01, time_intervaly=0.01, p=0.05, cbpt=True, clusterp=0.05, stats_timex=[0, 1], stats_timey=[0, 1], xlim=[0, 1], ylim=[0, 1], clim=[0.4, 0.8], xlabel='Training Time (s)', ylabel='Test Time (s)', clabel='Differences of Decoding Accuracies', figsize=[6.4, 4.8], cmap='viridis', ticksize=12, fontsize=16, title=None, title_fontsize=16)¶
Plot the differences of cross-temporal decoding accuracies between two conditions
- Parameters
acc1 (array) – The decoding accuracies under condition1. The size of acc should be [n_subs, n_tsx, n_tsy]. n_subs, n_tsx and n_tsy represent the number of subjects, the number of training time-points and the number of test time-points.
acc2 (array) – The decoding accuracies under condition2. The size of acc should be [n_subs, n_tsx, n_tsy]. n_subs, n_tsx and n_tsy represent the number of subjects, the number of training time-points and the number of test time-points.
start_timex (int or float. Default is 0.) – The training start time.
end_timex (int or float. Default is 1.) – The training end time.
start_timey (int or float. Default is 0.) – The test start time.
end_timey (int or float. Default is 1.) – The test end time.
time_intervalx (float. Default is 0.01.) – The training time interval between two time samples.
time_intervaly (float. Default is 0.01.) – The test time interval between two time samples.
chance (float. Default is 0.5.) – The chance level.
p (float. Default is 0.05.) – The threshold of p-values.
cbpt (bool True or False. Default is True.) – Conduct cluster-based permutation test or not.
clusterp (float. Default is 0.05.) – The threshold of cluster-defining p-values.
stats_timex (array or list [stats_timex1, stats_timex2]. Default os [0, 1].) – Trainning time period for statistical analysis.
stats_timey (array or list [stats_timey1, stats_timey2]. Default os [0, 1].) – Test time period for statistical analysis.
xlim (array or list [xmin, xmax]. Default is [0, 1].) – The x-axis (training time) view lims.
ylim (array or list [ymin, ymax]. Default is [0, 1].) – The y-axis (test time) view lims.
clim (array or list [cmin, cmax]. Default is [0.4, 0.8].) – The color-bar (decoding accuracy) view lims.
xlabel (string. Default is 'Training Time (s)'.) – The label of x-axis.
ylabel (string. Default is 'Test Time (s)'.) – The label of y-axis.
clabel (string. Default is 'Differences of Decoding Accuracies'.) – The label of color-bar.
figsize (array or list, [size_X, size_Y]. Default is [6.4, 3.6].) – The size of the figure.
cmap (matplotlib colormap or None. Default is None.) – The colormap for the figure.
ticksize (int or float. Default is 12.) – The size of the ticks.
fontsize (int or float. Default is 16.) – The fontsize of the labels.
title (string-array. Default is None.) – The title of the figure.
title_fontsize (int or float. Default is 16.) – The fontsize of the title.
- neurora.rsa_plot.plot_nps_hotmap(similarities, chllabels=None, time_unit=[0, 0.1], lim=[0, 1], abs=False, smooth=False, figsize=None, cmap=None, title=None, title_fontsize=16)¶
plot the hotmap of neural pattern similarities for channels/regions by time sequence
- similaritiesarray
The neural pattern similarities time-by-time. The shape of similarities must be [n_chls, ts]. n_chls represents the number of channels or regions. ts represents the number of time-points.
- chllabelstring-array or string-list or None. Default is None.
The label for channels/regions. If label=None, the labels will be ‘1st’, ‘2nd’, ‘3th’, ‘4th’, … automatically.
- time_unitarray or list [start_t, t_step]. Default is [0, 0.1]
The time information of corrs for plotting start_t represents the start time and t_step represents the time between two adjacent time-points. Default time_unit=[0, 0.1], which means the start time of corrs is 0 sec and the time step is 0.1 sec.
- limarray or list [min, max]. Default is [0, 1].
The corrs view lims.
- absboolean True or False. Default is False.
Change the similarities into absolute values or not.
- smoothboolean True or False. Default is False.
Smooth the results or not.
- figsizearray or list, [size_X, size_Y]
The size of the figure. If figsize=None, the size of the figure will be ajusted automatically.
- cmapmatplotlib colormap or None. Default is None.
The colormap for the figure. If cmap=None, the ccolormap will be ‘viridis’.
- titlestring-array. Default is None.
The title of the figure.
- title_fontsizeint or float. Default is 16.
The fontsize of the title.
- neurora.rsa_plot.plot_rdm(rdm, percentile=False, rescale=False, lim=[0, 1], conditions=None, con_fontsize=12, cmap=None, title=None, title_fontsize=16)¶
Plot the RDM
- Parameters
rdm (array or list [n_cons, n_cons]) – A representational dissimilarity matrix.
percentile (bool True or False. Default is False.) – Rescale the values in RDM or not by displaying the percentile.
rescale (bool True or False. Default is False.) – Rescale the values in RDM or not. Here, the maximum-minimum method is used to rescale the values except for the values on the diagnal.
lim (array or list [min, max]. Default is [0, 1].) – The corrs view lims.
conditions (string-array or string-list. Default is None.) – The labels of the conditions for plotting. conditions should contain n_cons strings, If conditions=None, the labels of conditions will be invisible.
con_fontsize (int or float. Default is 12.) – The fontsize of the labels of the conditions for plotting.
cmap (matplotlib colormap. Default is None.) – The colormap for RDM. If cmap=None, the ccolormap will be ‘jet’.
title (string-array. Default is None.) – The title of the figure.
title_fontsize (int or float. Default is 16.) – The fontsize of the title.
- neurora.rsa_plot.plot_rdm_withvalue(rdm, lim=[0, 1], value_fontsize=10, conditions=None, con_fontsize=12, cmap=None, title=None, title_fontsize=16)¶
Plot the RDM with values
- Parameters
rdm (array or list [n_cons, n_cons]) – A representational dissimilarity matrix.
lim (array or list [min, max]. Default is [0, 1].) – The corrs view lims.
value_fontsize (int or float. Default is 10.) – The fontsize of the values on the RDM.
conditions (string-array or string-list or None. Default is None.) – The labels of the conditions for plotting. conditions should contain n_cons strings, If conditions=None, the labels of conditions will be invisible.
con_fontsize (int or float. Default is 12.) – The fontsize of the labels of the conditions for plotting.
cmap (matplotlib colormap or None. Default is None.) – The colormap for RDM. If cmap=None, the ccolormap will be ‘Greens’.
title (string-array. Default is None.) – The title of the figure.
title_fontsize (int or float. Default is 16.) – The fontsize of the title.
- neurora.rsa_plot.plot_t_hotmap_withstats(results, chllabels=None, time_unit=[0, 0.1], lim=[- 7, 7], p=0.05, cbpt=False, clusterp=0.05, stats_time=[0, 1], smooth=False, xlabel='Time (s)', ylabel='Channel', clabel='t', ticksize=18, figsize=None, cmap=None, title=None, title_fontsize=16)¶
plot the hotmap of statistical results for channels/regions by time sequence
- resultsarray
The results. The shape of results must be [n_subs, n_chls, ts, 2] or [n_subs, n_chls, ts]. n_subs represents the number of subjects. n_chls represents the number of channels or regions. ts represents the number of time-points. If shape of corrs is [n_chls, ts 2], each time-point of each channel/region contains a r-value and a p-value. If shape is [n_chls, ts], only r-values.
- chllabelsstring-array or string-list or None. Default is None.
The label for channels/regions. If label=None, the labels will be ‘1st’, ‘2nd’, ‘3th’, ‘4th’, … automatically.
- time_unitarray or list [start_t, t_step]. Default is [0, 0.1]
The time information of corrs for plotting start_t represents the start time and t_step represents the time between two adjacent time-points. Default time_unit=[0, 0.1], which means the start time of corrs is 0 sec and the time step is 0.1 sec.
- limarray or list [min, max]. Default is [0, 1].
The corrs view lims.
- p: float. Default is 0.05.
The p threshold for outline.
- cbptbool True or False. Default is True.
Conduct cluster-based permutation test or not.
- clusterpfloat. Default is 0.05.
The threshold of cluster-defining p-values.
- stats_timearray or list [stats_time1, stats_time2]. Default os [0, 1].
The time period for statistical analysis.
- smoothbool True or False. Default is False.
Smooth the results or not.
- xlabelstring. Default is ‘Time (s)’.
The label of x-axis.
- ylabelstring. Default is ‘Channel’.
The label of y-axis.
- clabelstring. Default is ‘Similarity’.
The label of color-bar.
- ticksizeint or float. Default is 18.
The size of the ticks.
- figsizearray or list, [size_X, size_Y]
The size of the figure. If figsize=None, the size of the figure will be ajusted automatically.
- cmapmatplotlib colormap or None. Default is None.
The colormap for the figure. If cmap=None, the ccolormap will be ‘bwr’.
- titlestring-array. Default is None.
The title of the figure.
- title_fontsizeint or float. Default is 16.
The fontsize of the title.
- neurora.rsa_plot.plot_tbyt_decoding_acc(acc, start_time=0, end_time=1, time_interval=0.01, chance=0.5, p=0.05, cbpt=True, clusterp=0.05, stats_time=[0, 1], color='r', xlim=[0, 1], ylim=[0.4, 0.8], xlabel='Time (s)', ylabel='Decoding Accuracy', figsize=[6.4, 3.6], x0=0, ticksize=12, fontsize=16, markersize=2, title=None, title_fontsize=16, avgshow=False)¶
Plot the time-by-time decoding accuracies
- Parameters
acc (array) – The decoding accuracies. The size of acc should be [n_subs, n_ts]. n_subs, n_ts represent the number of subjects and number of time-points.
start_time (int or float. Default is 0.) – The start time.
end_time (int or float. Default is 1.) – The end time.
time_interval (float. Default is 0.01.) – The time interval between two time samples.
chance (float. Default is 0.5.) – The chance level.
p (float. Default is 0.05.) – The threshold of p-values.
cbpt (bool True or False. Default is True.) – Conduct cluster-based permutation test or not.
clusterp (float. Default is 0.05.) – The threshold of cluster-defining p-values.
stats_time (array or list [stats_time1, stats_time2]. Default os [0, 1].) – Time period for statistical analysis.
color (matplotlib color or None. Default is 'r'.) – The color for the curve.
xlim (array or list [xmin, xmax]. Default is [0, 1].) – The x-axis (time) view lims.
ylim (array or list [ymin, ymax]. Default is [0.4, 0.8].) – The y-axis (decoding accuracy) view lims.
xlabel (string. Default is 'Time (s)'.) – The label of x-axis.
ylabel (string. Default is 'Decoding Accuracy'.) – The label of y-axis.
figsize (array or list, [size_X, size_Y]. Default is [6.4, 3.6].) – The size of the figure.
x0 (float. Default is 0.) – The Y-axis is at x=x0.
ticksize (int or float. Default is 12.) – The size of the ticks.
fontsize (int or float. Default is 16.) – The fontsize of the labels.
markersize (int or float. Default is 2.) – The size of significant marker.
title (string-array. Default is None.) – The title of the figure.
title_fontsize (int or float. Default is 16.) – The fontsize of the title.
avgshow (boolen True or False. Default is False.) – Show the averaging decoding accuracies or not.
- neurora.rsa_plot.plot_tbyt_diff_decoding_acc(acc1, acc2, start_time=0, end_time=1, time_interval=0.01, chance=0.5, p=0.05, cbpt=True, clusterp=0.05, stats_time=[0, 1], color1='r', color2='b', xlim=[0, 1], ylim=[0.4, 0.8], xlabel='Time (s)', ylabel='Decoding Accuracy', figsize=[6.4, 3.6], x0=0, ticksize=12, fontsize=16, markersize=2, title=None, title_fontsize=16, avgshow=False)¶
Plot the differences of time-by-time decoding accuracies between two conditions
- Parameters
acc1 (array) – The decoding accuracies under condition1. The size of acc1 should be [n_subs, n_ts]. n_subs, n_ts represent the number of subjects and number of time-points.
acc2 (array) – The decoding accuracies under condition2. The size of acc2 should be [n_subs, n_ts]. n_subs, n_ts represent the number of subjects and number of time-points.
start_time (int or float. Default is 0.) – The start time.
end_time (int or float. Default is 1.) – The end time.
time_interval (float. Default is 0.01.) – The time interval between two time samples.
chance (float. Default is 0.5.) – The chance level.
p (float. Default is 0.05.) – The threshold of p-values.
cbpt (bool True or False. Default is True.) – Conduct cluster-based permutation test or not.
clusterp (float. Default is 0.05.) – The threshold of cluster-defining p-values.
stats_time (array or list [stats_time1, stats_time2]. Default os [0, 1].) – Time period for statistical analysis.
color1 (matplotlib color or None. Default is 'r'.) – The color for the curve under condition1.
color2 (matplotlib color or None. Default is 'r'.) – The color for the curve under condition2.
xlim (array or list [xmin, xmax]. Default is [0, 1].) – The x-axis (time) view lims.
ylim (array or list [ymin, ymax]. Default is [0.4, 0.8].) – The y-axis (decoding accuracy) view lims.
xlabel (string. Default is 'Time (s)'.) – The label of x-axis.
ylabel (string. Default is 'Decoding Accuracy'.) – The label of y-axis.
figsize (array or list, [size_X, size_Y]. Default is [6.4, 3.6].) – The size of the figure.
x0 (float. Default is 0.) – The Y-axis is at x=x0.
ticksize (int or float. Default is 12.) – The size of the ticks.
fontsize (int or float. Default is 16.) – The fontsize of the labels.
markersize (int or float. Default is 2.) – The size of significant marker.
title (string-array. Default is None.) – The title of the figure.
title_fontsize (int or float. Default is 16.) – The fontsize of the title.
avgshow (boolen True or False. Default is False.) – Show the averaging decoding accuracies or not.
- neurora.rsa_plot.plot_tbytsim_withstats(similarities, start_time=0, end_time=1, time_interval=0.01, smooth=True, p=0.05, cbpt=True, clusterp=0.05, stats_time=[0, 1], color='r', xlim=[0, 1], ylim=[- 0.1, 0.8], xlabel='Time (s)', ylabel='Representational Similarity', figsize=[6.4, 3.6], x0=0, ticksize=12, fontsize=16, markersize=2, title=None, title_fontsize=16, avgshow=False)¶
Plot the time-by-time Similarities with statistical results
- Parameters
similarities (array) – The Similarities. The size of similarities should be [n_subs, n_ts] or [n_subs, n_ts, 2]. n_subs, n_ts represent the number of subjects and number of time-points. 2 represents the similarity and a p-value.
start_time (int or float. Default is 0.) – The start time.
end_time (int or float. Default is 1.) – The end time.
time_interval (float. Default is 0.01.) – The time interval between two time samples.
smooth (bool True or False. Default is True.) – Smooth the results or not.
chance (float. Default is 0.5.) – The chance level.
p (float. Default is 0.05.) – The threshold of p-values.
cbpt (bool True or False. Default is True.) – Conduct cluster-based permutation test or not.
clusterp (float. Default is 0.05.) – The threshold of cluster-defining p-values.
stats_time (array or list [stats_time1, stats_time2]. Default os [0, 1].) – Time period for statistical analysis.
color (matplotlib color or None. Default is 'r'.) – The color for the curve.
xlim (array or list [xmin, xmax]. Default is [0, 1].) – The x-axis (time) view lims.
ylim (array or list [ymin, ymax]. Default is [0.4, 0.8].) – The y-axis (decoding accuracy) view lims.
xlabel (string. Default is 'Time (s)'.) – The label of x-axis.
ylabel (string. Default is 'Representational Similarity'.) – The label of y-axis.
figsize (array or list, [size_X, size_Y]. Default is [6.4, 3.6].) – The size of the figure.
x0 (float. Default is 0.) – The Y-axis is at x=x0.
ticksize (int or float. Default is 12.) – The size of the ticks.
fontsize (int or float. Default is 16.) – The fontsize of the labels.
markersize (int or float. Default is 2.) – The size of significant marker.
title (string-array. Default is None.) – The title of the figure.
title_fontsize (int or float. Default is 16.) – The fontsize of the title.
avgshow (boolen True or False. Default is False.) – Show the averaging decoding accuracies or not.